Narrow equidistribution and counting of closed geodesics on noncompact manifolds

نویسندگان

چکیده

We prove the equidistribution of (weighted) periodic orbits geodesic ow on noncompact negatively curved manifolds toward equilibrium states in narrow topology, i.e. dual bounded continuous functions. deduce an exact asymptotic counting for (weighted or not), which was previously known only geometrically finite manifolds.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equidistribution of Holonomy about Closed Geodesics

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Basic structure on symmetric spaces and Eisenstein series . . . . . . . . . . . . . . . . . 7 2. Harmonic analysis on groups and the Selberg trace formula . . . . . . . . . . . . . . . 11 3. Multiplicities of discrete series . . . . . . . . . . . . . . . . ...

متن کامل

On the Uniform Equidistribution of Closed Horospheres in Hyperbolic Manifolds

We prove asymptotic equidistribution results for pieces of large closed horospheres in cofinite hyperbolic manifolds of arbitrary dimension. This extends earlier results by Hejhal [10] and Strömbergsson [34] in dimension 2. Our proofs use spectral methods, and lead to precise estimates on the rate of convergence to equidistribution.

متن کامل

Closed Geodesics and Holonomies for Kleinian Manifolds

For a rank one Lie group G and a Zariski dense and geometrically finite subgroup Γ of G, we establish the joint equidistribution of closed geodesics and their holonomy classes for the associated locally symmetric space. Our result is given in a quantitative form for geometrically finite real hyperbolic manifolds whose critical exponents are big enough. In the case when G = PSL2(C), our results ...

متن کامل

Simple Closed Geodesics in Hyperbolic 3-Manifolds

This paper determines which orientable hyperbolic 3-manifolds contain simple closed geodesics. The Fuchsian group corresponding to the thrice-punctured sphere generates the only example of a complete nonelementary orientable hyperbolic 3-manifold that does not contain a simple closed geodesic. We do not assume that the manifold is geometrically finite or that it has finitely generated fundament...

متن کامل

Existence of closed geodesics on positively curved Finsler manifolds

For non-reversible Finsler metrics of positive flag curvature on spheres and projective spaces we present results about the number and the length of closed geodesics and about their stability properties. 2000 MSC classification: 53C22; 53C60; 58E10

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Groups, Geometry, and Dynamics

سال: 2021

ISSN: ['1661-7207', '1661-7215']

DOI: https://doi.org/10.4171/ggd/624